Josefina Martinez
Department of Economics
University of Colorado
$TITLE Model M1_5S: Closed 2x2 Economy with Specific Factors $ontext Sector-specific inputs can represent decreasing returns to scale. Rents accrue to a fictitious factor called "capital". Production Sectors Consumers Markets | X Y W | CONS ------------------------------------------------------ PX | 100 -100 | PY | 100 -100 | PW | 200 | -200 PL | -50 -50 | 100 PKX | -50 | 50 PKY | -50 | 50 ------------------------------------------------------ $offtext * Declare GAMS parameters which we will use in model: SCALAR TX Ad-valorem tax rate for X sector inputs /0/ ESUB Elasticity of substitution for good X /1/ SX Subsidy on X sector output /0/ X0 Benchmark x /100/ XPROD X productivity /1/; $ONTEXT $MODEL:M1_5S $SECTORS: X ! Activity level for sector X Y ! Activity level for sector Y W ! Activity level for sector W (Hicksian welfare index) $COMMODITIES: PW ! Price index for welfare (expenditure function) PX ! Price index for commodity X PY ! Price index for commodity Y PL ! Price index for primary factor L PKX ! Price index for sector-specific input for sector X PKY ! Price index for sector-specific input for sector Y $CONSUMERS: CONS ! Income level for consumer CONS $PROD:X s:ESUB O:PX Q:100 A:CONS T:(-SX) I:PL Q: 50 A:CONS T:TX I:PKX Q: 50 A:CONS T:TX $PROD:Y s:1 O:PY Q:100 I:PL Q: 50 I:PKY Q: 50 $PROD:W s:1 O:PW Q:200 I:PX Q:100 I:PY Q:100 $DEMAND:CONS D:PW Q:200 E:PL Q:100 E:PKX Q:50 E:PKY Q:50 $OFFTEXT $SYSINCLUDE mpsgeset M1_5S * Benchmark replication: M1_5S.ITERLIM = 0; $INCLUDE M1_5S.GEN SOLVE M1_5S USING MCP; M1_5S.ITERLIM = 2000; * Solve a counterfactual: TX = 1; $INCLUDE M1_5S.GEN SOLVE M1_5S USING MCP; *------------------------------------------------------------------------- * EXERCISE (1). Evaluate the price elasticity of supply for * good X at the benchmark point and then design an experiment * to measure this elasticity numerically. $ontext For constant returns to scale technologies the cost function, in equilibrium, defines the price of output: p = c(r,w) where w is the exogenous wage rate and r is the residual return to the sector's fixed factor. The price elasticity of supply at the benchmark point is: ES_X = dX * (p/w) ------ ----- d(p/w) X If we use the calibrated CES cost function (see: "Some Hints and Useful Formulae" in www.gams.com/solvers/mpsge) and equate cost to the price of output, we get an expression for the price elasticity of supply as follows: ES_X = ESUBL * (1 - SHAREKX) / SHAREKX TO CHECK THE PRICE ELASTICITY OF SUPPLY (ES_X) we change the price of good X with a production subsidy (SX), then we compute the producer price of good X (PXP) as the consumer price PX.L plus the subsidy: PXP = (1 + SX) * PX.L. We divide the change in supply of X (X.L - 1) by the change in the ratio of producer price of X to price of labor; and multiply by the benchmark ratio (1) divided by the benchmark level of supply of good X (1) to produce a finite difference approximation of the elasticity: ES_X = (X.L - 1)/ ((PXP/PL.L) - 1) $offtext * EVALUATE ES_X AT BENCHMARK POINT: * Return to benchmark parameters: TX = 0; * Change the price of good X (levy a production subsidy): SX = 0.001; $INCLUDE M1_5S.GEN SOLVE M1_5S USING MCP; PARAMETER ES_X Elasticity of supply of good X PXP Producer price of good X SHAREKX Value share of KX; * The producer price is equal to the consumer price plus the * subsidy: PXP = (1 + SX)*PX.L; ES_X= (X.L - 1)/((PXP/PL.L) - 1); * Compute ES_X as a function of ESUBL and the share value of * capital which in this model is 0.50. SHAREKX = 0.50; DISPLAY "ELASTICITY CHECK -- The following values should be identical", ES_X; ES_X = ESUB * (1 - SHAREKX)/SHAREKX; DISPLAY ES_X; *------------------------------------------------------------------------- * EXERCISE (2). Convert sector X from Cobb-Douglas to CES and * set the elasticity of substitution between PL and PKX so that * the benchmark price elasticity of supply equals an assumed value: ES_X= 2; ESUB = (SHAREKX * ES_X) / (1 - SHAREKX); $INCLUDE M1_5S.GEN SOLVE M1_5S USING MCP; * Producer price: PXP = (1 + SX)*PX.L; * The calibrated price elasticity of supply of good X is: ES_X= (X.L - 1)/((PXP/PL.L) - 1); * Check calibration: DISPLAY "ELASTICITY CHECK --The following values should be identical", ES_X; ES_X = ESUB * (1 - SHAREKX)/SHAREKX; DISPLAY ES_X;The solution listing appears as follows:
S O L V E S U M M A R Y MODEL M1_5S Default price normalization using income for CONS LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PW . 1.000 +INF . ---- VAR PX . 1.000 +INF . ---- VAR PY . 1.000 +INF . ---- VAR PL . 1.000 +INF . ---- VAR PKX . 1.000 +INF . ---- VAR PKY . 1.000 +INF . ---- VAR CONS . 200.000 +INF . X Activity level for sector X Y Activity level for sector Y W Activity level for sector W (Hicksian welfare index) PW Price index for welfare (expenditure function) PX Price index for commodity X PY Price index for commodity Y PL Price index for primary factor L PKX Price index for sector-specific input for sector X PKY Price index for sector-specific input for sector Y CONS Income level for consumer CONSCounterfactual model: 100% tax on X sector inputs:
S O L V E S U M M A R Y MODEL M1_5S Default price normalization using income for CONS LOWER LEVEL UPPER MARGINAL ---- VAR X . 0.816 +INF . ---- VAR Y . 1.155 +INF . ---- VAR W . 0.971 +INF . ---- VAR PW . 1.545 +INF . ---- VAR PX . 1.837 +INF . ---- VAR PY . 1.299 +INF . ---- VAR PL . 1.125 +INF . ---- VAR PKX . 0.750 +INF . ---- VAR PKY . 1.500 +INF . ---- VAR CONS . 300.000 +INF .EXERCISE (1). Evaluate the price elasticity of supply for good X.
S O L V E S U M M A R Y MODEL M1_5S Default price normalization using income for CONS LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PW . 1.124 +INF . ---- VAR PX . 1.124 +INF . ---- VAR PY . 1.125 +INF . ---- VAR PL . 1.125 +INF . ---- VAR PKX . 1.125 +INF . ---- VAR PKY . 1.124 +INF . ---- VAR CONS . 224.850 +INF . E x e c u t i o n ---- 627 ES_X CHECK -- The following values should be identical ---- 627 PARAMETER ES_X = 1.000 Elasticity of supply of good X ---- 630 PARAMETER ES_X = 1.000 Elasticity of supply of good XEXERCISE (2). Evaluate the price elasticity of supply for good X.
S O L V E S U M M A R Y MODEL M1_5S Default price normalization using income for CONS LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PW . 1.124 +INF . ---- VAR PX . 1.124 +INF . ---- VAR PY . 1.125 +INF . ---- VAR PL . 1.125 +INF . ---- VAR PKX . 1.125 +INF . ---- VAR PKY . 1.124 +INF . ---- VAR CONS . 224.850 +INF . E x e c u t i o n ---- 764 Elasticity Check --The following values should be identical ---- 764 PARAMETER ES_X = 2.000 Elasticity of supply of good X ---- 768 PARAMETER ES_X = 2.000 Elasticity of supply of good X