MPSGE:Closed Economy Models. Solution to Model M1_5S

Closed Economy Models: Solution to Model M1_5S

Josefina Martinez
Department of Economics
University of Colorado

$TITLE  Model M1_5S: Closed 2x2 Economy with Specific Factors

$ontext
	Sector-specific inputs can represent decreasing returns to
	scale. Rents accrue to a fictitious factor called "capital".

		   Production Sectors          Consumers
    Markets   |    X       Y        W    |       CONS
    ------------------------------------------------------
	 PX   |  100             -100    |
	 PY   |          100     -100    |
	 PW   |                   200    |       -200
	 PL   |  -50     -50             |        100
	 PKX  |  -50                     |         50
	 PKY  |          -50             |         50
    ------------------------------------------------------

$offtext

*       Declare GAMS parameters which we will use in model:

SCALAR  TX      Ad-valorem tax rate for X sector inputs /0/
	ESUB    Elasticity of substitution for good X /1/
	SX      Subsidy on X sector output /0/
	X0      Benchmark x /100/
	XPROD   X productivity /1/;

$ONTEXT

$MODEL:M1_5S

$SECTORS:
	X       ! Activity level for sector X
	Y       ! Activity level for sector Y
	W       ! Activity level for sector W (Hicksian welfare index)

$COMMODITIES:
	PW      ! Price index for welfare (expenditure function)
	PX      ! Price index for commodity X
	PY      ! Price index for commodity Y
	PL      ! Price index for primary factor L
	PKX     ! Price index for sector-specific input for sector X
	PKY     ! Price index for sector-specific input for sector Y

$CONSUMERS:
	CONS    ! Income level for consumer CONS

$PROD:X s:ESUB
	O:PX    Q:100     A:CONS   T:(-SX)
	I:PL    Q: 50     A:CONS   T:TX
	I:PKX   Q: 50     A:CONS   T:TX

$PROD:Y s:1
	O:PY   Q:100
	I:PL   Q: 50
	I:PKY  Q: 50

$PROD:W s:1
	O:PW   Q:200
	I:PX   Q:100
	I:PY   Q:100

$DEMAND:CONS
	D:PW  Q:200
	E:PL  Q:100
	E:PKX Q:50
	E:PKY Q:50

$OFFTEXT
$SYSINCLUDE mpsgeset M1_5S

*       Benchmark replication:
	M1_5S.ITERLIM = 0;

$INCLUDE M1_5S.GEN
	SOLVE M1_5S USING MCP;

	M1_5S.ITERLIM = 2000;
*       Solve a counterfactual:

	TX = 1;

$INCLUDE M1_5S.GEN
	SOLVE M1_5S USING MCP;


*-------------------------------------------------------------------------
*       EXERCISE (1).  Evaluate the price elasticity of supply for
*       good X at the benchmark point and then design an experiment
*       to  measure this elasticity numerically.

$ontext
	For constant returns to scale technologies the cost
	function, in equilibrium, defines the price of output:

		p = c(r,w)
	
	where w is the exogenous wage rate and r is the residual
	return to the sector's fixed factor.

	The price elasticity of supply at the benchmark point is:
		
		ES_X =   dX   *  (p/w)
		       ------    -----
		       d(p/w)      X

	If we use the calibrated CES cost function (see: "Some Hints
	and Useful Formulae" in www.gams.com/solvers/mpsge) and equate 
	cost to the price of output, we get an expression for the price
	elasticity of supply as follows:

		ES_X = ESUBL * (1 - SHAREKX) / SHAREKX
		
	TO CHECK THE PRICE ELASTICITY OF SUPPLY (ES_X) we change the
	price of good X with a production subsidy (SX), then we
	compute the producer price of good X (PXP) as the consumer price
	PX.L plus the subsidy: PXP = (1 + SX) * PX.L.  We divide the
	change in supply of X (X.L - 1) by the change in the ratio of
	producer price of X to price of labor; and multiply by the
	benchmark ratio (1) divided by the benchmark level of supply
	of good  X (1) to produce a finite difference approximation
	of the elasticity: 

		ES_X = (X.L - 1)/ ((PXP/PL.L) - 1) 

$offtext

*       EVALUATE ES_X AT BENCHMARK POINT:
*       Return to benchmark parameters:
	TX = 0;

*       Change the price of good X (levy a production subsidy):

	SX = 0.001;

$INCLUDE M1_5S.GEN
	SOLVE M1_5S USING MCP;

PARAMETER       ES_X     Elasticity of supply of good X
		PXP      Producer price of good X
		SHAREKX  Value share of KX;

*       The producer price is equal to the consumer price plus the
*       subsidy: 

PXP = (1 + SX)*PX.L;

ES_X= (X.L - 1)/((PXP/PL.L) - 1);

*       Compute ES_X as a function of ESUBL and the share value of
*       capital which in this model is 0.50.

SHAREKX = 0.50;

DISPLAY "ELASTICITY CHECK -- The following values should be identical", ES_X;

ES_X = ESUB * (1 - SHAREKX)/SHAREKX;
DISPLAY ES_X;


*-------------------------------------------------------------------------
*       EXERCISE (2). Convert sector X from Cobb-Douglas to CES and
*       set the elasticity of substitution between PL and PKX so that 
*       the benchmark price elasticity of supply equals an assumed value:

ES_X= 2;

ESUB = (SHAREKX * ES_X) / (1 - SHAREKX);

$INCLUDE M1_5S.GEN
	SOLVE M1_5S USING MCP;

*       Producer price:

PXP = (1 + SX)*PX.L;


*       The calibrated price elasticity of supply of good X is:

ES_X= (X.L - 1)/((PXP/PL.L) - 1);

*       Check calibration:

DISPLAY "ELASTICITY CHECK --The following values should be identical", ES_X;

ES_X = ESUB * (1 - SHAREKX)/SHAREKX;

DISPLAY ES_X;


The solution listing appears as follows:

	       S O L V E      S U M M A R Y

     MODEL   M1_5S               

 Default price normalization using income for CONS

		       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.000     +INF       .         
---- VAR PW              .        1.000     +INF       .         
---- VAR PX              .        1.000     +INF       .         
---- VAR PY              .        1.000     +INF       .         
---- VAR PL              .        1.000     +INF       .         
---- VAR PKX             .        1.000     +INF       .         
---- VAR PKY             .        1.000     +INF       .         
---- VAR CONS            .      200.000     +INF       .         

  X           Activity level for sector X
  Y           Activity level for sector Y
  W           Activity level for sector W (Hicksian welfare index)
  PW          Price index for welfare (expenditure function)
  PX          Price index for commodity X
  PY          Price index for commodity Y
  PL          Price index for primary factor L
  PKX         Price index for sector-specific input for sector X
  PKY         Price index for sector-specific input for sector Y
  CONS        Income level for consumer CONS

Counterfactual model: 100% tax on X sector inputs:

	       S O L V E      S U M M A R Y

     MODEL   M1_5S               

 Default price normalization using income for CONS

		       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        0.816     +INF       .         
---- VAR Y               .        1.155     +INF       .         
---- VAR W               .        0.971     +INF       .         
---- VAR PW              .        1.545     +INF       .         
---- VAR PX              .        1.837     +INF       .         
---- VAR PY              .        1.299     +INF       .         
---- VAR PL              .        1.125     +INF       .         
---- VAR PKX             .        0.750     +INF       .         
---- VAR PKY             .        1.500     +INF       .         
---- VAR CONS            .      300.000     +INF       .         

EXERCISE (1). Evaluate the price elasticity of supply for good X.
Cobb-Douglas production function:

	       S O L V E      S U M M A R Y

     MODEL   M1_5S               

 Default price normalization using income for CONS

		       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.000     +INF       .         
---- VAR PW              .        1.124     +INF       .         
---- VAR PX              .        1.124     +INF       .         
---- VAR PY              .        1.125     +INF       .         
---- VAR PL              .        1.125     +INF       .         
---- VAR PKX             .        1.125     +INF       .         
---- VAR PKY             .        1.124     +INF       .         
---- VAR CONS            .      224.850     +INF       .         


E x e c u t i o n

----    627 ES_X CHECK -- The following values should be identical

----    627 PARAMETER ES_X                 =        1.000 Elasticity of supply 
							  of good X

----    630 PARAMETER ES_X                 =        1.000 Elasticity of supply 
							  of good X

EXERCISE (2). Evaluate the price elasticity of supply for good X.
CES production function -- elasticity of substitution = 2:

 
	       S O L V E      S U M M A R Y

     MODEL   M1_5S               

 Default price normalization using income for CONS

		       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.000     +INF       .         
---- VAR PW              .        1.124     +INF       .         
---- VAR PX              .        1.124     +INF       .         
---- VAR PY              .        1.125     +INF       .         
---- VAR PL              .        1.125     +INF       .         
---- VAR PKX             .        1.125     +INF       .         
---- VAR PKY             .        1.124     +INF       .         
---- VAR CONS            .      224.850     +INF       .         


E x e c u t i o n

----    764 Elasticity Check --The following values should be identical

----    764 PARAMETER ES_X                 =        2.000 Elasticity of supply 
							  of good X

----    768 PARAMETER ES_X                 =        2.000 Elasticity of supply 
							  of good X