Josefina Martinez
Department of Economics
University of Colorado
$TITLE Model M1_2S: Closed 2X2 Economy with Intermediate Inputs and Nesting $ontext Production Sectors Consumers Markets | X Y W | CONS ------------------------------------------------------ PX | 120 -20 -100 | PY | -20 120 -100 | PW | 200 | -200 PL | -40 -60 | 100 PK | -60 -40 | 100 ------------------------------------------------------ $offtext SCALAR TX Ad-valorem tax rate for X sector inputs /0/; $ONTEXT $MODEL: M1_2S $SECTORS: X ! Activity level for sector X Y ! Activity level for sector Y W ! Activity level for sector W (Hicksian welfare index) $COMMODITIES: PX ! Price index for commodity X PY ! Price index for commodity Y PL ! Price index for primary factor L PK ! Price index for primary factor K PW ! Price index for welfare (expenditure function) $CONSUMERS: CONS ! Income level for consumer CONS * The following production function is a two-level CES. * In the VA, L and K form a Cobb-Douglas aggregate. * In the top level, Y and VA(L,K) have an elasticity of * substitution equal to 0.5 $PROD:X s:0.5 va:1 O:PX Q:120 I:PY Q: 20 I:PL Q:40 va: A:CONS T:TX I:PK Q:60 va: A:CONS T:TX $PROD:Y s:0.75 va:1 O:PY Q:120 I:PX Q: 20 I:PL Q: 60 va: I:PK Q: 40 va: $PROD:W s:1 O:PW Q:200 I:PX Q:100 I:PY Q:100 $DEMAND:CONS D:PW Q:200 E:PL Q:100 E:PK Q:100 $OFFTEXT $SYSINCLUDE mpsgeset M1_2S * Benchmark replication: M1_2S.ITERLIM = 0; $INCLUDE M1_2S.GEN SOLVE M1_2S USING MCP; * Fix the wage rate as numeraire: PL.FX = 1; * Counterfactual: 100% tax on X sector inputs: M1_2S.ITERLIM = 2000; TX = 1.0; $INCLUDE M1_2S.GEN SOLVE M1_2S USING MCP; * Declare a GAMS parameter to hold the solution values: PARAMETER WELF Summary report; * Extract solution values into this parameter: WELF("MOD1")= W.L; *------------------------------------------------------------------- * Algebraic representation EQUATIONS * "0" profit PRF_X Zero profit for sector X PRF_Y Zero profit for sector Y PRF_W Zero profit for sector W (Hicksian welfare index) * Market clearance MKT_X Supply-demand balance for commodity X MKT_Y Supply-demand balance for commodity Y MKT_L Supply-demand balance for primary factor L MKT_K Supply-demand balance for primary factor L MKT_W Supply-demand balance for aggregate demand * Income Balance I_CONS Income definition for CONS; PRF_X.. 120 * ( 1/6 * PY**(1-0.5) + 5/6 * (PL**0.4 * PK**0.6 * (1+TX))**(1-0.5) )**(1/(1-0.5)) =E= 120 * PX; PRF_Y.. 120 * ( 1/6 * PX**(1-0.75) + 5/6 * (PL**0.6 * PK**0.4)**(1-0.75) )**(1/(1-0.75)) =E= 120 * PY; PRF_W.. 200 * PX**0.5 * PY**0.5 =E= 200 * PW; MKT_X.. 120 * X =E= 100 * W * PX**0.5 * PY**0.5 / PX + 20*Y*(PY/PX)**0.75; MKT_Y.. 120 * Y =E= 100 * W * PX**0.5 * PY**0.5 / PY + 20*X*(PX/PY)**0.5; MKT_W.. 200 * W =E= CONS / PW; MKT_L.. 100 =E= 40 * X * (PX/((1+TX)*PL**0.4*PK**0.6))**0.5 * PL**0.4 * PK**0.6 / PL + 60 * Y * (PY/(PL**0.6 * PK**0.4))**0.75 * PL**0.6 * PK**0.4 / PL; MKT_K.. 100 =E= 60 * X * (PX/((1+TX)*PL**0.4*PK**0.6))**0.5 * PL**0.4 * PK**0.6 / PK + 40 * Y * (PY/(PL**0.6 * PK**0.4))**0.75 * PL**0.6 * PK**0.4 / PK; I_CONS.. CONS =E= 100*PL + 100*PK + TX * 100 * X * PL**0.4*PK**0.6 * (PX/((1+TX)*PL**0.4*PK**0.6))**0.5; MODEL ALGEBRAIC /PRF_X.X, PRF_Y.Y, PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK, MKT_W.PW, I_CONS.CONS /; * Check the benchmark: X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PK.L=1; PW.L=1; CONS.L=200; TX = 0; ALGEBRAIC.ITERLIM = 0; SOLVE ALGEBRAIC USING MCP; ALGEBRAIC.ITERLIM = 2000; * Solve the same counterfactual: TX = 1; SOLVE ALGEBRAIC USING MCP; *-------------------------------------------------------------------- * EXERCISE (1). Revise the X sector production to nest Y with * K at the bottom (Cobb-Douglas) level, and then let these * inputs trade off with L at the top (CES) nest. $ONTEXT $MODEL:MOD_NEST $SECTORS: X ! Activity level for sector X Y ! Activity level for sector X W ! Activity level for sector W (Hicksian welfare index) $COMMODITIES: PX ! Price index for commodity X PY ! Price index for commodity Y PL ! Price index for primary factor L PK ! Price index for primary factor K PW ! Price index for Welfare (expenditure function) $CONSUMERS: CONS ! Income level for consumer CONS * Modified nested CES $PROD:X s:0.5 LY:1 O:PX Q:120 I:PY Q:20 LY: I:PL Q:40 A:CONS T:TX I:PK Q:60 LY: A:CONS T:TX $PROD:Y s:0.75 va:1 O:PY Q:120 I:PX Q:20 I:PL Q:60 va: I:PK Q:40 va: $PROD:W s:1 O:PW Q:200 I:PX Q:100 I:PY Q:100 $DEMAND:CONS D:PW Q:200 E:PL Q:100 E:PK Q:100 $OFFTEXT $SYSINCLUDE mpsgeset MOD_NEST * Benchmark replication TX = 0; MOD_NEST.ITERLIM = 0; $INCLUDE MOD_NEST.GEN SOLVE MOD_NEST USING MCP; MOD_NEST.ITERLIM = 2000; * Solve same counterfactual: 100% tax on X sector inputs: TX = 1.0; $INCLUDE MOD_NEST.GEN SOLVE MOD_NEST USING MCP; * Extract solution values into this parameter: WELF("MOD2")= W.L; PARAMETER REPORT; REPORT("EX_BURDEN", "MOD1") = 100 * (WELF("MOD1") - 1); REPORT("EX_BURDEN", "MOD2") = 100 * (WELF("MOD2") - 1); DISPLAY "Compare Excess Burden of Taxation", REPORT; *-------------------------------------------------------------------- * EXERCISE (2). Rewrite the algebraic model in accordance * with the new nesting structure: EQUATIONS * "0" profit PPPRF_X Zero profit for sector X PPRF_Y Zero profit for sector Y PPRF_W Zero profit for sector W * Market clearance MMKT_X Supply-demand balance for commodity X MMKT_Y Supply-demand balance for commodity Y MMKT_L Supply-demand balance for primary factor L MMKT_K Supply-demand balance for primary factor K MMKT_W Supply-demand balance for aggregate demand * Income Balance II_CONS Income definition for CONS; PPPRF_X.. 120 * ( 1/3 * (PL*(1+TX))**(1-0.5) + 2/3 * (PY**0.25 * (PK * (1+TX))**0.75)**(1-0.5))**(1/(1-0.5)) =E= 120 * PX; PPRF_Y.. 120 * ( 1/6 * PX**(1-0.75) + 5/6 * (PL**0.6 * PK**0.4)**(1-0.75))**(1/(1-0.75)) =E= 120 * PY; PPRF_W.. 200 * PX**0.5 * PY**0.5 =E= 200 * PW; MMKT_X.. 120 * X =E= 100 * W * (PX**0.5 * PY**0.5) / PX + 20*Y*(PY/PX)**0.75; MMKT_Y.. 120 * Y =E= 100 * W * (PX**0.5 * PY**0.5) / PY + 20*X*PX**0.5 * (PY**0.25 * (PK * (1+TX))**0.75)**(1-0.5) / PY; MMKT_W.. 200 * W =E= CONS / PW; MMKT_L.. 100 =E= 40 * X * PX**0.5 * (PL*(1+TX))**(1-0.5) /(PL*(1+TX)) + 60 * Y * (PY/(PL**0.6 * PK**0.4))**0.75 * (PL**0.6 * PK**0.4) / PL; MMKT_K.. 100 =E= 60 * X * PX**0.5*(PY**0.25*(PK*(1+TX))**0.75)**(1-0.5) / (PK *(1+TX)) + 40 * Y * (PY/(PL**0.6 * PK**0.4))**0.75 * PL**0.6 * PK**0.4 / PK; II_CONS.. CONS =E= 100 * PL + 100 * PK + TX * X * PX**0.5 * (40 * (PL*(1+TX))**(1-0.5)/ (1+TX) + 60 * (PY**0.25 * (PK*(1+TX))**0.75)**(1-0.5) / (1+TX)); MODEL ALGEBA /PPPRF_X.X, PPRF_Y.Y, PPRF_W.W, MMKT_X.PX, MMKT_Y.PY, MMKT_L.PL, MMKT_K.PK, MMKT_W.PW, II_CONS.CONS /; * Check the benchmark: X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PK.L=1; PW.L=1; CONS.L=200; TX = 0; ALGEBA.ITERLIM = 0; SOLVE ALGEBA USING MCP; ALGEBA.ITERLIM =2000; * solve the same counterfactual: TX = 1; SOLVE ALGEBA USING MCP;The solution listing appears as follows:
S O L V E S U M M A R Y MODEL M1_2S Default price normalization using income for CONS LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PX . 1.000 +INF . ---- VAR PY . 1.000 +INF . ---- VAR PL . 1.000 +INF . ---- VAR PK . 1.000 +INF . ---- VAR PW . 1.000 +INF . ---- VAR CONS . 200.000 +INF . X Activity level for sector X Y Activity level for sector Y W Activity level for sector W (Hicksian welfare index) PX Price index for commodity X PY Price index for commodity Y PL Price index for primary factor L PK Price index for primary factor K PW Price index for welfare (expenditure function) CONS Income level for consumer CONSCounterfactual model: 100% tax on X sector inputs
S O L V E S U M M A R Y MODEL M1_2S LOWER LEVEL UPPER MARGINAL ---- VAR X . 0.760 +INF . ---- VAR Y . 1.173 +INF . ---- VAR W . 0.954 +INF . ---- VAR PX . 1.719 +INF . ---- VAR PY . 1.061 +INF . ---- VAR PL 1.000 1.000 1.000 EPS ---- VAR PK . 0.894 +INF . ---- VAR PW . 1.350 +INF . ---- VAR CONS . 257.541 +INF .Algebraic model
S O L V E S U M M A R Y MODEL ALGEBRAIC LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PX . 1.000 +INF . ---- VAR PY . 1.000 +INF . ---- VAR PL 1.000 1.000 1.000 EPS ---- VAR PK . 1.000 +INF . ---- VAR PW . 1.000 +INF . ---- VAR CONS . 200.000 +INF .Algebraic model- Counterfactual: 100% tax on X sector inputs
S O L V E S U M M A R Y MODEL ALGEBRAIC LOWER LEVEL UPPER MARGINAL ---- VAR X . 0.760 +INF . ---- VAR Y . 1.173 +INF . ---- VAR W . 0.954 +INF . ---- VAR PX . 1.719 +INF . ---- VAR PY . 1.061 +INF . ---- VAR PL 1.000 1.000 1.000 1.094E-12 ---- VAR PK . 0.894 +INF . ---- VAR PW . 1.350 +INF . ---- VAR CONS . 257.541 +INF .EXERCISE (1). Revise the X sector production
S O L V E S U M M A R Y MODEL MOD_NEST LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PX . 1.000 +INF . ---- VAR PY . 1.000 +INF . ---- VAR PL 1.000 1.000 1.000 EPS ---- VAR PK . 1.000 +INF . ---- VAR PW . 1.000 +INF . ---- VAR CONS . 200.000 +INF .Counterfactual model: 100% tax on X sector inputs
S O L V E S U M M A R Y MODEL MOD_NEST LOWER LEVEL UPPER MARGINAL ---- VAR X . 0.766 +INF . ---- VAR Y . 1.195 +INF . ---- VAR W . 0.950 +INF . ---- VAR PX . 1.651 +INF . ---- VAR PY . 1.032 +INF . ---- VAR PL 1.000 1.000 1.000 EPS ---- VAR PK . 0.841 +INF . ---- VAR PW . 1.306 +INF . ---- VAR CONS . 248.001 +INF . E x e c u t i o n ---- 991 Compare Excess Burden of Taxation ---- 991 PARAMETER REPORT MOD1 MOD2 EX_BURDEN -4.647 -5.024EXERCISE (2). Algebraic representation of MOD_NEST model. Benchmark replication
S O L V E S U M M A R Y MODEL ALGEBA LOWER LEVEL UPPER MARGINAL ---- VAR X . 1.000 +INF . ---- VAR Y . 1.000 +INF . ---- VAR W . 1.000 +INF . ---- VAR PX . 1.000 +INF . ---- VAR PY . 1.000 +INF . ---- VAR PL 1.000 1.000 1.000 EPS ---- VAR PK . 1.000 +INF . ---- VAR PW . 1.000 +INF . ---- VAR CONS . 200.000 +INF .Algebraic representation of MOD_NEST. Counterfactual: 100% tax on X sector inputs
S O L V E S U M M A R Y MODEL ALGEBA LOWER LEVEL UPPER MARGINAL ---- VAR X . 0.766 +INF . ---- VAR Y . 1.195 +INF . ---- VAR W . 0.950 +INF . ---- VAR PX . 1.651 +INF . ---- VAR PY . 1.032 +INF . ---- VAR PL 1.000 1.000 1.000 1.3579E-8 ---- VAR PK . 0.841 +INF . ---- VAR PW . 1.306 +INF . ---- VAR CONS . 248.001 +INF .