MPSGE:Closed Economy Models. Solution to Model M1_1S

Closed Economy Models: Solution to Model M1_1S

Josefina Martinez
Department of Economics
University of Colorado

$TITLE  Model M1_1S: Closed 2x2 Economy --A Quick Introduction to the Basics

$ontext
		  Production Sectors          Consumers
   Markets   |    X       Y        W    |       CONS
   ------------------------------------------------------
	PX   |  100             -100    |
	PY   |          100     -100    |
	PW   |                   200    |       -200
	PL   |  -40     -60             |        100
	PK   |  -60     -40             |        100
   ------------------------------------------------------
$offtext

*       Declare GAMS parameters which we will use in model specification.
*	X0 will be used in exercise (2).  

SCALAR  TX      Ad-valorem tax rate for X sector inputs /0/,
	LENDOW  Labor endowment multiplier              /1/,
	X0      Benchmark value of X                    /100/;

$ONTEXT
$MODEL:M1_1S

$SECTORS:
	X       ! Activity level for sector X
	Y       ! Activity level for sector Y
	W       ! Activity level for sector W (Hicksian welfare index)

$COMMODITIES:
	PX      ! Price index for commodity X
	PY      ! Price index for commodity Y
	PL      ! Price index for primary factor L
	PK      ! Price index for primary factor K
	PW      ! Price index for welfare (expenditure function)

$CONSUMERS:
	CONS    ! Income level for consumer CONS

*       Cobb-Douglas technology is characterized by unitary elasticity
*       of substitution at the top level (s:1).  

$PROD:X s:1
	O:PX  Q:X0
	I:PL  Q:40 A:CONS T:TX
	I:PK  Q:60 A:CONS T:TX

$PROD:Y s:1
	O:PY  Q:100
	I:PL  Q:60
	I:PK  Q:40

$PROD:W s:1
	O:PW   Q:200
	I:PX   Q:100
	I:PY   Q:100

*       This function represents preferences (using reference
*       demands), and initial factor endowments:

$DEMAND:CONS
	D:PW   Q:200
	E:PL   Q:(100*LENDOW)
	E:PK   Q:100

$OFFTEXT

*       Instruct MPSGE to compile the functions:

$SYSINCLUDE mpsgeset M1_1S

*       Use Labor as numeraire.  (When no price is exogenously fixed, 
*       the system uses one consumer income as normalization, and
*       this income level is determined by the initial price vector).

	PL.FX = 1;

*       Replicate the benchmark:
	M1_1S.ITERLIM = 0;

$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;
	
	M1_1S.ITERLIM = 2000;
*       Solve a counterfactual: 50% tax on inputs to X production.

	TX = 0.5;       
	LENDOW = 1;

$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;

*       Solve a counterfactual: 100% increase in labor endowment (TX=0)
	TX = 0;         
	LENDOW = 2;

$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;


*-------------------------------------------------------------------------
*       Algebraic representation:
*       The equations are written using precisely the same variables 
*       which have already been declared within the MPSGE model (hence 
*       they need not be declared).

EQUATIONS
	PRF_X   Zero profit for sector X
	PRF_Y   Zero profit for sector Y
	PRF_W   Zero profit for sector W (Hicksian welfare index)

	MKT_X   Supply-demand balance for commodity X
	MKT_Y   Supply-demand balance for commodity Y
	MKT_L   Supply-demand balance for primary factor L
	MKT_K   Supply-demand balance for primary factor L
	MKT_W   Supply-demand balance for aggregate demand

	I_CONS  Income definition for CONS;

*       Zero profit conditions are produced for all of the production
*       sectors.  These are interpreted as:

*               Cost of Production Gross of Tax  =  Value of Output

PRF_X..         100 * PL**0.4 * PK**0.6 * (1+TX) =E= 100 * PX;

PRF_Y..         100 * PL**0.6 * PK**0.4 =E= 100 * PY;

PRF_W..         200 * PX**0.5 * PY**0.5 =E= 200 * PW;

*       Market clearance conditions for each of the final goods and
*       primary factors.  These are interpreted as:

*               Output plus Initial Endowment  = Intermediate + Final Demand

MKT_X..         100 * X =E= 100 * W * PX**0.5 * PY**0.5 / PX;

MKT_Y..         100 * Y =E= 100 * W * PX**0.5 * PY**0.5 / PY;

MKT_W..         200 * W =E= CONS / PW;

MKT_L..         100 * LENDOW =E= 40 * X * PL**0.4 * PK**0.6 / PL +
				 60 * Y * PL**0.6 * PK**0.4 / PL;

MKT_K..         100 =E= 60 * X * PL**0.4 * PK**0.6 / PK +
			40 * Y * PL**0.6 * PK**0.4 / PK;

*       Income balance states that the level of expenditure (CONS)
*       equals the value of factor income plus tax revenue:

I_CONS..        CONS =E= 100*LENDOW*PL + 100*PK + TX*100*X*PL**0.4*PK**0.6;

*       We declare this model using the mixed complementarity syntax
*       in which equation identifiers are associated with variables.

MODEL ALGEBRAIC /PRF_X.X, PRF_Y.Y, PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_L.PL, 
		 MKT_K.PK, MKT_W.PW, I_CONS.CONS /;

*       Check the benchmark:

	X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PK.L=1; PW.L=1; CONS.L=200;
	
	TX = 0; 
	LENDOW=1;
	ALGEBRAIC.ITERLIM = 0;
	
	SOLVE ALGEBRAIC USING MCP;

	ALGEBRAIC.ITERLIM = 2000;
*       Solve the same counterfactuals:  (Note that if the PL is not
*	fixed, the algebraic model may not solve because the Jacobian
*	is singular at the solution)
	
	TX = 0.5;       
	LENDOW = 1;
	
	SOLVE ALGEBRAIC USING MCP;

	TX = 0;         
	LENDOW = 2;
	
	SOLVE ALGEBRAIC USING MCP;


*---------------------------------------------------------------------
*       EXERCISE (1):  Remove the PL.FX = 1. 
*       Rerun the counter-factual simulations using the MPSGE model and 
*       the default price normalization.  Verify that relative price in 
*       the new solution are identical to the original solution.

*       Return to the default value of the lower and upper limit of PL:

	PL.LO = 0;
	PL.UP = +INF;

*       Check the benchmark: 
	
	X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PK.L=1; PW.L=1; CONS.L=200;
	TX = 0; 
	LENDOW=1;

	M1_1S.ITERLIM = 0;
$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;

	M1_1S.ITERLIM = 2000;
*       Solve the same counterfactuals:
	
	TX = 0.5;       
	LENDOW = 1;

$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;

	TX = 0;         
	LENDOW = 2;

$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;


*---------------------------------------------------------------------
*       EXERCISE (2): Introduce a "typo" in sector X output, e.g. 
*       O:PX Q:101, and then examine the benchmark replication
*       listing  to see how this error is manifested in the output.

*       Specify a new value for X0:
	X0 = 101;

*       Return to the benchmark value of the parameters:
	TX = 0; 
	LENDOW = 1;

*       Fix Labor as the numeraire:
	PL.FX = 1;

	DISPLAY X0;

$INCLUDE M1_1S.GEN
	SOLVE M1_1S USING MCP;


*-------------------------------------------------------------------------
$TITLE  Model M1_1V: Closed 2x2 Economy --  Introduces Vector Syntax

*       Declare the value of the variables as a table:

TABLE BENCH(*,*)  Benchmark financial flows (e.g. an input-output table)

		X       Y        W           CONS
	X     100             -100    
	Y             100     -100    
	W                      200           -200
	L     -40     -60                     100
	K     -60     -40                     100;

*       Declare the underlying sets:

SET     I   Produced goods          /X, Y/,
	F   Factors of production   /L, K/;

*     Use I and J to both index goods:

ALIAS (I,J), (F,FF);

PARAMETER       Y0(I)         Benchmark sectoral output,
		FD0(F,I)      Benchmark factor demands,
		C0(I)         Benchmark consumption demand, 
		E(F)          Factor endowments, 
		T(I)          Sectoral ad-valorem tax rate, 
		W0            Benchmark total consumption;

*       Extract data from the original format into model-specific arrays:

Y0(I)         = BENCH(I,I);          
FD0(F,I)      = -BENCH(F,I);
C0(I)         = -BENCH(I,"W");       
W0            = SUM(I, C0(I));
E(F)          = BENCH(F,"CONS");     
T(I)          = 0;

DISPLAY Y0, FD0, C0, E, T;

*       MPSGE model declaration follows:

$ONTEXT

$MODEL:M1_1V

*     Here we define production activities over the set I.  
*     N.B.  If we are running the vector syntax model using the same 
*     GMS file, the names of the variables must be different to those  
*     used in the previous model (scalar syntax) because in this model  
*     the domain is redefined.

$SECTORS:
	OUT(I)          ! Commodity production index
	W               ! Welfare index

$COMMODITIES:
	PW              ! Utility price index
	PC(I)           ! Commodity price index
	PF(F)           ! Factor price index

$CONSUMERS:
	CONS            ! Representative consumer

$PROD:OUT(I) s:1
	O:PC(I)         Q:Y0(I)
	I:PF(F)         Q:FD0(F,I)   A:CONS  T:T(I)

$PROD:W  s:1
	O:PW            Q:W0
	I:PC(I)         Q:C0(I)

$DEMAND:CONS
	D:PW            Q:W0
	E:PF(F)         Q:E(F)

$OFFTEXT
$SYSINCLUDE mpsgeset M1_1V

*       Check the calibration:

	M1_1V.ITERLIM = 0;
$INCLUDE M1_1V.GEN
	SOLVE M1_1V USING MCP;

*       Declare a GAMS parameter to hold the solution values:

	PARAMETER REPORT        Summary report;

*       Extract solution values into this parameter:

	REPORT("WELFARE"," ","BENCH") = W.L;    
	REPORT("PRICE",I,"BENCH")     = PC.L(I);
	REPORT("PRICE",F,"BENCH")     = PF.L(F);
	REPORT("OUTPUT",I,"BENCH")    = OUT.L(I);


	M1_1V.ITERLIM = 2000;
*       Counterfactual: 50% tax on inputs to X production: 

	T("X") = 0.5;
$INCLUDE M1_1V.GEN
	SOLVE M1_1V USING MCP;
	
	REPORT("WELFARE"," ","50%TAX") = W.L;   
	REPORT("PRICE",I,"50%TAX")     = PC.L(I);
	REPORT("PRICE",F,"50%TAX")     = PF.L(F);   
	REPORT("OUTPUT",I,"50%TAX")    = OUT.L(I);

*       Counterfactual: 100% increase in labor Endowment. Tax set back to zero:

	E("L") = 2 * E("L");    
	T(I) = 0;
$INCLUDE M1_1V.GEN
	SOLVE M1_1V USING MCP;

	REPORT("WELFARE"," ","100%L") = W.L;
	REPORT("PRICE",I,"100%L")     = PC.L(I);
	REPORT("PRICE",F,"100%L")     = PF.L(F);
	REPORT("OUTPUT",I,"100%L")    = OUT.L(I);

*       Place all the output at the bottom of the listing file:

DISPLAY REPORT;


*--------------------------------------------------------------------------
*     Representation of the Algebraic Vector Syntax:

PARAMETER   ALPHA(F,I)  Factor input benchmark value share
	    BETA(I)           Consumption value share;

ALPHA(F,I) = FD0(F,I) / SUM(FF, FD0(FF,I));
BETA(I) = C0(I) / W0;

EQUATIONS
      PROFIT(I)   Zero profit condition 
      CMKT(I)     Commodity market clearance
      FMKT(F)     Factor market clearance
      CPRF_W      Zero profit for aggregate consumption
      CMKT_W      Market clearance for aggregate consumption
      I_CON       Income = factor earnings plus taxes;

PROFIT(I)..  (1+T(I)) * PROD(F, PF(F)**ALPHA(F,I)) =E= PC(I);

CPRF_W..     PROD(I, PC(I)**BETA(I)) =E= PW;

CMKT(I)..    Y0(I) * OUT(I) =E= C0(I) * W * PROD(J, PC(J)**BETA(J)) / PC(I);

CMKT_W..     W0 * W =E= CONS / PW;

FMKT(F)..    E(F) =E= SUM(I, FD0(F,I) * OUT(I) 
		  * PROD(FF, PF(FF)**ALPHA(FF,I))) / PF(F);

I_CON..      CONS =E= SUM(F, PF(F) * E(F)) + SUM(I, T(I) * Y0(I) * OUT(I) 
		  * PROD(F, PF(F)**ALPHA(F,I)) );

MODEL ALGEBRAV /PROFIT.OUT, CPRF_W.W, CMKT.PC, FMKT.PF, CMKT_W.PW, I_CON.CONS/;

SOLVE ALGEBRAV USING MCP;


The solution listing appears as follows:

               S O L V E      S U M M A R Y

     MODEL   M1_1S               

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.000     +INF       .         
---- VAR PX              .        1.000     +INF       .         
---- VAR PY              .        1.000     +INF       .         
---- VAR PL             1.000     1.000     1.000      EPS       
---- VAR PK              .        1.000     +INF       .         
---- VAR PW              .        1.000     +INF       .         
---- VAR CONS            .      200.000     +INF       .         

  X           Activity level for sector X
  Y           Activity level for sector Y
  W           Activity level for sector W (Hicksian welfare index)
  PX          Price index for commodity X
  PY          Price index for commodity Y
  PL          Price index for primary factor L
  PK          Price index for primary factor K
  PW          Price index for welfare (expenditure function)
  CONS        Income level for consumer CONS

Counterfactual model: 50% tax on inputs to X production

               S O L V E      S U M M A R Y

     MODEL   M1_1S               

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        0.807     +INF       .         
---- VAR Y               .        1.191     +INF       .         
---- VAR W               .        0.981     +INF       .         
---- VAR PX              .        1.430     +INF       .         
---- VAR PY              .        0.968     +INF       .         
---- VAR PL             1.000     1.000     1.000      EPS       
---- VAR PK              .        0.923     +INF       .         
---- VAR PW              .        1.177     +INF       .         
---- VAR CONS            .      230.769     +INF       .         

Counterfactual model: 100% increase in labor endowment (TX=0)

               S O L V E      S U M M A R Y

     MODEL   M1_1S               

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.320     +INF       .         
---- VAR Y               .        1.516     +INF       .         
---- VAR W               .        1.414     +INF       .         
---- VAR PX              .        1.516     +INF       .         
---- VAR PY              .        1.320     +INF       .         
---- VAR PL             1.000     1.000     1.000      EPS       
---- VAR PK              .        2.000     +INF       .         
---- VAR PW              .        1.414     +INF       .         
---- VAR CONS            .      400.000     +INF       .         

Algebraic model

               S O L V E      S U M M A R Y

     MODEL   ALGEBRAIC           

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.000     +INF       .         
---- VAR PX              .        1.000     +INF       .         
---- VAR PY              .        1.000     +INF       .         
---- VAR PL             1.000     1.000     1.000      EPS       
---- VAR PK              .        1.000     +INF       .         
---- VAR PW              .        1.000     +INF       .         
---- VAR CONS            .      200.000     +INF       .         

Algebraic model- Counterfactual: 50% tax on inputs to X production

               S O L V E      S U M M A R Y

     MODEL   ALGEBRAIC           

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        0.807     +INF       .         
---- VAR Y               .        1.191     +INF       .         
---- VAR W               .        0.981     +INF       .         
---- VAR PX              .        1.430     +INF       .         
---- VAR PY              .        0.968     +INF       .         
---- VAR PL             1.000     1.000     1.000 4.4400E-7      
---- VAR PK              .        0.923     +INF       .         
---- VAR PW              .        1.177     +INF       .         
---- VAR CONS            .      230.769     +INF       .         

Algebraic model- Counterfactual: 100% increase in labor endowment (TX=0)

               S O L V E      S U M M A R Y

     MODEL   ALGEBRAIC           

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.320     +INF       .         
---- VAR Y               .        1.516     +INF       .         
---- VAR W               .        1.414     +INF       .         
---- VAR PX              .        1.516     +INF       .         
---- VAR PY              .        1.320     +INF       .         
---- VAR PL             1.000     1.000     1.000 1.705E-13      
---- VAR PK              .        2.000     +INF       .         
---- VAR PW              .        1.414     +INF       .         
---- VAR CONS            .      400.000     +INF       .         

EXERCISE (1):Remove the PL.FX = 1 (use the default normalization)

               S O L V E      S U M M A R Y

     MODEL   M1_1S               

 Default price normalization using income for CONS

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.000     +INF       .         
---- VAR PX              .        1.000     +INF       .         
---- VAR PY              .        1.000     +INF       .         
---- VAR PL              .        1.000     +INF       .         
---- VAR PK              .        1.000     +INF       .         
---- VAR PW              .        1.000     +INF       .         
---- VAR CONS            .      200.000     +INF       .         

Counterfactual model: 50% tax on inputs to X production

               S O L V E      S U M M A R Y

     MODEL   M1_1S               

 Default price normalization using income for CONS

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        0.807     +INF       .         
---- VAR Y               .        1.191     +INF       .         
---- VAR W               .        0.981     +INF       .         
---- VAR PX              .        1.549     +INF       .         
---- VAR PY              .        1.049     +INF       .         
---- VAR PL              .        1.083     +INF       .         
---- VAR PK              .        1.000     +INF       .         
---- VAR PW              .        1.275     +INF       .         
---- VAR CONS            .      250.000     +INF       .         

Counterfactual model: 100% increase in labor endowment (TX=0)

               S O L V E      S U M M A R Y

     MODEL   M1_1S               

 Default price normalization using income for CONS

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.320     +INF       .         
---- VAR Y               .        1.516     +INF       .         
---- VAR W               .        1.414     +INF       .         
---- VAR PX              .        1.200     +INF       .         
---- VAR PY              .        1.045     +INF       .         
---- VAR PL              .        0.792     +INF       .         
---- VAR PK              .        1.583     +INF       .         
---- VAR PW              .        1.120     +INF       .         
---- VAR CONS            .      316.667     +INF       .         

EXERCISE (2): Introduce a "typo" in sector X:

E x e c u t i o n

----    991 PARAMETER X0                   =      101.000 Benchmark value of X


               S O L V E      S U M M A R Y

     MODEL   M1_1S               

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR X               .        1.000     +INF       .         
---- VAR Y               .        1.000     +INF       .         
---- VAR W               .        1.005     +INF       .         
---- VAR PX              .        0.990     +INF       .         
---- VAR PY              .        1.000     +INF       .         
---- VAR PL             1.000     1.000     1.000      EPS       
---- VAR PK              .        1.000     +INF       .         
---- VAR PW              .        0.995     +INF       .         
---- VAR CONS            .      200.000     +INF       .         

VECTOR SYNTAX
Extract data into model-specific arrays:

E x e c u t i o n


----   1137 PARAMETER Y0            Benchmark sectoral output

X 100.000,    Y 100.000


----   1137 PARAMETER FD0           Benchmark factor demands

            X           Y

L      40.000      60.000
K      60.000      40.000


----   1137 PARAMETER C0            Benchmark consumption demand

X 100.000,    Y 100.000


----   1137 PARAMETER E             Factor endowments

L 100.000,    K 100.000


----   1137 PARAMETER T             Sectoral ad-valorem tax rate

                    ( ALL       0.000 )

Benchmark Replication

               S O L V E      S U M M A R Y

     MODEL   M1_1V               

 Default price normalization using income for CONS

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR W               .        1.000     +INF       .         
---- VAR PW              .        1.000     +INF       .         
---- VAR CONS            .      200.000     +INF       .         


---- VAR OUT         Commodity production index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.000     +INF       .         
Y      .        1.000     +INF       .         


---- VAR PC          Commodity price index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.000     +INF       .         
Y      .        1.000     +INF       .         


---- VAR PF          Factor price index

     LOWER     LEVEL     UPPER    MARGINAL  

L      .        1.000     +INF       .         
K      .        1.000     +INF       .         

Counterfactual model: 50% increase in labor endowment (TX=0)

               S O L V E      S U M M A R Y

     MODEL   M1_1V               

 Default price normalization using income for CONS

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR W               .        0.981     +INF       .         
---- VAR PW              .        1.275     +INF       .         
---- VAR CONS            .      250.000     +INF       .         


---- VAR OUT         Commodity production index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        0.807     +INF       .         
Y      .        1.191     +INF       .         


---- VAR PC          Commodity price index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.549     +INF       .         
Y      .        1.049     +INF       .         


---- VAR PF          Factor price index

     LOWER     LEVEL     UPPER    MARGINAL  

L      .        1.083     +INF       .         
K      .        1.000     +INF       .         

Counterfactual model: 100% increase in labor endowment (TX=0)

               S O L V E      S U M M A R Y

     MODEL   M1_1V               

 Default price normalization using income for CONS

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR W               .        1.414     +INF       .         
---- VAR PW              .        1.120     +INF       .         
---- VAR CONS            .      316.667     +INF       .         


---- VAR OUT         Commodity production index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.320     +INF       .         
Y      .        1.516     +INF       .         


---- VAR PC          Commodity price index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.200     +INF       .         
Y      .        1.045     +INF       .         


---- VAR PF          Factor price index

     LOWER     LEVEL     UPPER    MARGINAL  

L      .        0.792     +INF       .         
K      .        1.583     +INF       .         

Summary of results from the Vector Syntax models:

E x e c u t i o n


----   1599 PARAMETER REPORT        Summary report

                BENCH      50%TAX       100%L

WELFARE.        1.000       0.981       1.414
PRICE  .X       1.000       1.549       1.200
PRICE  .Y       1.000       1.049       1.045
PRICE  .L       1.000       1.083       0.792
PRICE  .K       1.000       1.000       1.583
OUTPUT .X       1.000       0.807       1.320
OUTPUT .Y       1.000       1.191       1.516

VECTOR SYNTAX - Algebraic representation of the Vector Syntax.
Counterfactual model: 100% increase in labor endowment (TX=0)

               S O L V E      S U M M A R Y

     MODEL   ALGEBRAV            

                       LOWER     LEVEL     UPPER    MARGINAL  

---- VAR W               .        1.414     +INF       .         
---- VAR PW              .        1.120     +INF       .         
---- VAR CONS            .      316.667     +INF       .         


---- VAR OUT         Commodity production index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.320     +INF       .         
Y      .        1.516     +INF       .         


---- VAR PC          Commodity price index

     LOWER     LEVEL     UPPER    MARGINAL  

X      .        1.200     +INF       .         
Y      .        1.045     +INF       .         


---- VAR PF          Factor price index

     LOWER     LEVEL     UPPER    MARGINAL  

L      .        0.792     +INF       .         
K      .        1.583     +INF       .