$ontext Dear GAMS users, Can you please help me with the following problem: I want to add a constraint to a simple MPSGE model in which the activity level of some sector in period t+1 depends on the activity level of another sector in period. The idea is that this sector ("old") is perfectly substitutable to another sector ("new") in the production of some good ("total"). One can interpret "old" as the surviving portion of "total" (a simplified vintage approach). In the counterfactual, i want to increase the 'survival share'. The solution should be simple: a bit more "old", a little less "new", same "total". Any suggestions? $offtext $TITLE Ramsey Model: Incorporating Extant and New Vintage Capital SET T /0*50/ SET TL(T) /0,10,20,30,40,50/; SET TFIRST(T), TLAST(T); TFIRST(T) = YES$(ORD(T) EQ 1); TLAST(T) = YES$(ORD(T) EQ CARD(T)); SCALAR G Baseline growth rate /0.02/, IR Baseline steady-state interest rate /0.05/, K0 Capital-output ratio /3.00/, DELTA Depreciation rate for new capital /0.07/, DELTAX Depreciation rate for extant capital /0.07/, I0 Base year investment, L0 Base year labor input, C0 Base year consumption, KVS Base year capital value share; I0 = (DELTA + G) * K0; L0 = 1 - K0 * (DELTA + IR); C0 = 1 - (DELTA + G) * K0; KVS = K0 * (DELTA + IR); PARAMETER QREF(T) Reference quantity path, PREF(T) Reference price path; QREF(T) = (1+G)**(ORD(T)-1); PREF(T) = (1/(1+IR))**(ORD(T)-1); PARAMETER ALPHA; ALPHA(T) = ((1+G)/(1+IR))**(ORD(T)-1); ALPHA(TLAST) = ALPHA(TLAST) / (1-(1+G)/(1+IR)); $ONTEXT $MODEL:RAMSEY $SECTORS: X(T) ! Output from extant (old) vintage capital Y(T) ! Output new vintage capital I(T) ! Investment in new capital K(T) ! New vintage Capital stock $COMMODITIES: P(T) ! Output price RK(T) ! Return to capital RKX(T) ! Return to extant (old) capital PK(T) ! Capital price PL(T) ! Wage rate PKT ! Terminal capital $CONSUMERS: RA ! Representative agent $AUXILIARY: TK ! Post-terminal capital stock $PROD:X(T) s:1 O:P(T) Q:1 I:PL(T) Q:L0 I:RKX(T) Q:K0 P:(DELTA+IR) $PROD:Y(T) s:1 O:P(T) Q:1 I:PL(T) Q:L0 I:RK(T) Q:K0 P:(DELTA+IR) $PROD:K(T) O:PK(T+1) Q:(1-DELTA) O:PKT$TLAST(T) Q:(1-DELTA) O:RK(T) Q:1 I:PK(T) Q:1 $PROD:I(T) O:PK(T+1) Q:1 O:PKT$TLAST(T) Q:1 I:P(T) Q:1 $DEMAND:RA s:1 D:P(T) Q:(QREF(T)*C0) P:PREF(T) E:PL(T) Q:(L0*QREF(T)) E:PK(TFIRST) Q:(0.1*K0) E:RKX(T) Q:(0.9*K0*(1-deltax)**(ord(t)-1)) E:PKT Q:-1 R:TK $REPORT: V:C(T) D:P(T) DEMAND:RA $CONSTRAINT:TK SUM(T$TLAST(T+1), I(T+1)/I(T) - Y(T+1)/Y(T)) =E= 0; $OFFTEXT $SYSINCLUDE mpsgeset RAMSEY Y.L(T) = QREF(T); X.L(T) = QREF(T); I.L(T) = I0 * QREF(T); K.L(T) = K0 * QREF(T); P.L(T) = PREF(T); RK.L(T) = PREF(T) * (DELTA+IR); PK.L(T) = PREF(T) * (1+IR); PL.L(T) = PREF(T); PKT.L = SUM(TLAST, PREF(TLAST)); TK.L = K0 * (1+G)**CARD(T); RAMSEY.ITERLIM = 1000; $INCLUDE RAMSEY.GEN SOLVE RAMSEY USING MCP; PARAMETER BAU Baseline values; BAU(T,"X") = X.L(T); BAU(T,"Y") = Y.L(T); BAU(T,"I") = I.L(T); BAU(T,"K") = K.L(T); BAU(T,"C") = C.L(T); * Model an unanticipated permanent change * in the depreciation rate for extant capital * from 7% per annum to 6% per annum: DELTAX = 0.06; $INCLUDE RAMSEY.GEN SOLVE RAMSEY USING MCP; PARAMETER IMPACT Percentage changes; IMPACT(T,"Y") = 100 * (Y.L(T)/BAU(T,"Y")-1); IMPACT(T,"I") = 100 * (I.L(T)/BAU(T,"I")-1); IMPACT(T,"K") = 100 * (K.L(T)/BAU(T,"K")-1); IMPACT(T,"C") = 100 * (C.L(T)/BAU(T,"C")-1); $SETGLOBAL DOMAIN T $SETGLOBAL LABELS TL $LIBINCLUDE PLOT IMPACT